Алюминиевого сплава марки аве

Обновлено: 19.05.2024

Алюминий – легкий металл серебристо-белого цвета, имеющий 13 номер в системе Менделеева. Обладает такими свойствами как: парамагнитность, способность легко поддаваться литью, формовке, резке, стойкость к коррозии, высокую электропроводность и теплопроводность.

На сегодняшний день, это один из самых распространенных конструкционных материалов. В первоначальном виде он достаточно мягкий и изготовленные из него детали не имеют необходимой прочности. Для улучшения его эксплуатационных качеств производители добавляют в алюминий различные добавки и образуют сплавы различной твердости. Эти сплавы получаются такими же легкими, как и чистый алюминий, но значительно прочнее его. При этом они не обладают такой коррозионной стойкостью, как у чистого алюминия и обычно требуют дополнительно коррозионной защиты. Основными легирующими элементами сплава так называемого «авиационного алюминия» являются: медь, магний, кремний, марганец, цинк. Процентное содержание этих элементов по массе в сплаве определяют такие характеристики, как прочность, гибкость, стойкость к механическим воздействиям и др. Такие алюминиевые сплавы получили очень широкое распространение в различных отраслях промышленности. На алюминий приходится от 50% до 90% общей массы самолетов и космических кораблей. Из него изготавливают корпуса летательных аппаратов, детали двигателей, шасси, топливные баки, крепежные устройства и др. Детали из авиационного алюминия используются также в интерьере салонов самолетов. Из алюминия изготавливают также корпуса морских и речных судов, кузова и рамы железнодорожных вагонов, элементы каркасов в строительстве, части кузовов автомобилей, трубы для нефтяной промышленности и т.п.

Какой алюминий называют "авиационным" и почему он применяется в изготовлении точилок?

Одним из лучших на сегодняшний день материалов, является алюминиевый сплав 7075-Т6, в международной терминологии 7075 T6-Aluminium. Из всех наиболее популярных алюминиевых сплавов: 2014-Т6, 6061-Т6, 7005-Т6, сплав 7075-Т6 является самым прочным. Первоначально он был разработан японской компанией Sumitomo Metal в 1943 году и использовался для производства боевых японских самолетов. С тех пор он активно применяется в авиационной промышленности по всему миру.

Сплав 7075-Т6 включает в себя, помимо алюминия, 5.6 % цинка, 2.4 % магния, 0.15% марганца, 1.6% меди и 0.23% хрома, а также минимальные количества титана, кремния, железа и других элементов. Предел прочности на разрыв у этого сплава составляет 83000 psi (фунтов на дюйм) или 572.264 Мпа. По прочности этот сплав не уступает среднепрочным сталям, предел прочности которых более 520 МПа, но при этом он в три раза легче. Твердость по Бринеллю для этого сплава составляет 150 (HBW). Для сравнения твердость стали, чугуна и сплавов с добавлением никеля, кобальта и т.д. порядка 140 HBW, титан и его сплавы от 50 HBW, медь и ее сплавы от 35 HBW. Обычно алюминий применяется в условиях, когда требуется высокая прочность на растяжение, а прочность при усталости металла не является важным фактором.

Какой алюминий называют "авиационным" и почему он применяется в изготовлении точилок?

Механические свойства 7075 в значительной степени зависят от отпуска материала. Уровень Т6 обычно достигается путем гомогенизации 7075 при 450 ° С в течение нескольких часов, затем происходит тушение, а затем искусственное состаривание при 120°С в течение 24 часов. Такая технология позволяет достигать максимума прочности для сплава 7075.

Сплав 7075-Т6 не применяют в условиях с высоким коррозионным воздействием. Это связано с присутствием меди в составе сплава. Медь способствует его упрочнению, но в то же время плохо влияет на его коррозионную стойкость. Однако, чем меньше по размеру изделие из сплава 7075-Т6, тем меньше вероятность его коррозионного разрушения. В частности, в условиях городских квартир с небольшой влажностью и стабильной температурой изделия из этого сплава практически не коррозируют.

Какой алюминий называют "авиационным" и почему он применяется в изготовлении точилок?

В заточных устройствах Техностудии «Профиль» большинство основных деталей, узлов и механизмов изготовлены из алюминиевого сплава 7075-Т6. В частности, основные узлы точилки Профиль К03, такие как: рамка поворотного механизма, площадка для угломера, реечный подъемник (включая барашки подъемника и шарнирный узел).

Какой алюминий называют "авиационным" и почему он применяется в изготовлении точилок?

Среди зажимов, применяемых на точилке Профиль К03, полностью алюминиевыми, можно назвать цельнофрезерованные зажимы и цельно-фрезерованные филейные зажимы. Прочность алюминия позволяет нарезать в нем резьбу и использовать металлические винты для затягивания зажима.

Какой алюминий называют "авиационным" и почему он применяется в изготовлении точилок?

А также малый универсальный стол, который имеет полностью алюминиевую площадку для крепления ножей и инструментов. Она регулируется с помощью кронштейнов, посаженных на ось. Ось выполнена из единого с площадкой куска алюминия, что делает ее прочной монолитной конструкцией.

Какой алюминий называют "авиационным" и почему он применяется в изготовлении точилок?

В точилке Blitz из алюминия выполнен корпус и большинство узлов, включая поворотный механизм, корпус, ножки шарнирного узла, нивелировочное кольцо, упоры держателя абразива.

Какой алюминий называют "авиационным" и почему он применяется в изготовлении точилок?

Использование алюминиевого сплава 7075-Т6 позволяет производить детали высокой прочности, с большим рабочим ресурсом, самых разных форм и размеров. Это оптимальный металл для надежных и качественных заточных систем.

3 Общие требования

Марки и химический состав алюминия должны соответствовать указанным в таблице 1.

3.1 Соотношение железа и кремния в алюминии должно быть не менее единицы.

(Измененная редакция, Изм. N 1).

3.2 Марки и химический состав алюминиевых сплавов систем алюминий-медь-магний и алюминий-медь-марганец должны соответствовать указанным в таблице 2.

(Измененная редакция, Изм. N 1; Поправки, ИУС 11-2000, 5-2004).

3.3 Марки и химический состав алюминиевых сплавов системы алюминий-марганец должны соответствовать указанным в таблице 3.

(Измененная редакция, Изм. N 1).

3.3.1 Соотношение железа и кремния в сплаве АМцС должно быть больше единицы.

3.4 Марки и химический состав алюминиевых сплавов системы алюминий-магний должны соответствовать указанным в таблице 4.

3.4.1 В сплаве марки АМг2, предназначенном для изготовления ленты, применяемой в качестве тары-упаковки в пищевой промышленности, массовая доля магния должна быть от 1,8 до 3,2%.

3.5 Марки и химический состав алюминиевых сплавов системы алюминий-магний-кремний должны соответствовать указанным в таблице 5.

(Измененная редакция, Изм. N 1; Поправка, ИУС 11-2000).

3.6 Марки и химический состав алюминиевых сплавов системы алюминий-цинк-магний должны соответствовать указанным в таблице 6.

(Измененная редакция, Изм. N 1).

3.7 В алюминии и алюминиевых сплавах, указанных в таблицах 1-6, допускается частичная или полная замена титана бором или другими модифицирующими добавками, обеспечивающими мелкозернистую структуру.

3.8 В алюминии и алюминиевых сплавах, полуфабрикаты из которых применяют при изготовлении изделий пищевого назначения, массовая доля свинца должна быть не более 0,15%, массовая доля мышьяка - не более 0,015%.

Марки алюминия и алюминиевых сплавов пищевого назначения дополнительно маркируются буквой "Ш".

(Измененная редакция, Изм. N 1).

3.9 Химический состав сплавов марок Д1, Д16, АМг5 и В95, предназначенных для изготовления проволоки для холодной высадки, должен соответствовать указанному в таблице 7. При этом марка дополнительно маркируется буквой "П".

3.10 Марки и химический состав алюминия и алюминиевых сплавов, предназначенных для изготовления сварочной проволоки, должны соответствовать указанным в таблице 8.

Марки и химический состав алюминиевых сплавов системы алюминий-кремний должны соответ-ствовать указанным в таблице 9.

(Поправки, ИУС 11-2000, 4-2005); (Измененная редакция, Изм. N 2).

3.11 Содержание элементов в таблицах 1-9 максимальное, если не указаны пределы.

3.12 Химический состав алюминия и алюминиевых сплавов в таблицах 1-9 дан в процентах по массе. Расчетное значение или значение, полученное из анализа, округляют в соответствии с правилами округления, приведенными в приложении А.

3.11, 3.12 (Измененная редакция, Изм. N 2).

3.13 В графу "Прочие элементы" входят элементы, содержание которых не представлено, а также элементы, не указанные в таблицах.

3.15 Массовые доли бериллия, бора и церия устанавливаются по расчету шихты, не определяются, а обеспечиваются технологией производства.

3.16 Содержание прочих элементов не определяют (обеспечивается технологией производства). Содержание каждого из прочих элементов и их сумму в протоколах анализа химического состава не указывают.

Алюминий сплавы и марки

Алюминий для раскисления
АВ86 АВ86Ф АВ88 АВ88Ф АВ91
АВ91Ф АВ92 АВ92Ф АВ97 АВ97Ф

Алюминиевый деформируемый сплав
1201 1420 АВ АД31 АД33
АД35 АК4 АК4-1 АК6 АК8
АМг1 АМг2 АМг3 АМг3С АМг4
АМг4.5 АМг5 АМг5П АМг6 АМц
АМцС АЦпл В65 В93 В94
В95 В95П В96 В96ц В96Ц1
ВД17 Д1 Д12 Д16 Д16П
Д18 Д19 Д1П Д20 Д21
ММ

Алюминиевый антифрикционный сплав
АМСТ АН-2.5 АО20-1 АО3-1 АО3-7
АО6-1 АО9-1 АО9-2 АО9-2Б АСМ

Свойства и полезная информация:

Описание алюминия: Алюминий не имеет полиморфных превращений, обладает решеткой гранецентрированного куба с периодом а=0,4041 нм. Алюминий и его сплавы хорошо поддаются горячей и холодной деформации — прокатке, ковке, прессованию, волочению, гибке, листовой штамповке и другим операциям.

Все алюминиевые сплавы можно соединять точечной сваркой, а специальные сплавы можно сваривать плавлением и другими видами сварки. Деформируемые алюминиевые сплавы разделяются на упрочняемые и неупрочняемые термической обработкой.

Все свойства сплавов определяют не только способом получения полуфабриката заготовки и термической обработкой, но главным образом химическим составом и особенно природой фаз — упрочнителей каждого сплава. Свойства стареющих алюминиевых сплавов зависят от видов старения: зонного, фазового или коагуляционного.

На стадии коагуляционного старения (Т2 и ТЗ) значительно повышается коррозионная стойкость, причем обеспечивается наиболее оптимальное сочетание характеристик прочности, сопротивления коррозии под напряжением, расслаивающей коррозии, вязкости разрушения (К) и пластичности (особенно в высотном направлении).

Состояние полуфабрикатов, характер плакировки и направление вырезки образцов обозначены следующим образом - Условные обозначения проката из алюминия:

М - Мягкий, отожженный

Т - Закаленный и естественно состаренный

Т1 - Закаленный и искусственно состаренный

Т2 - Закаленный и искусственно состаренный по режиму, обеспечивающему более высокие значения вязкости разрушения и лучшее сопротивление коррозии под напряжением

ТЗ - Закаленный и искусственно состаренный по режиму, обеспечивающему наиболее высокие сопротивления коррозии под напряжением и вязкость разрушения

Н - Нагартованный (нагартовка листов сплавов типа дуралюмии примерно 5—7 %)

H1 - Усиленно нагартованный (нагартовка листов примерно 20 %)

ТПП - Закаленный и естественно состаренный, повышенной прочности

ГК - Горячекатаные (листы, плиты)

Б - Технологическая плакировка

А - Нормальная плакировка

УП - Утолщенная плакировка (8 % на сторону)

Д - Продольное направление (вдоль волокна)

П - Поперечное направление

В - Высотное направление (толщина)

X - Хордовое направление

Р - Радиальное направление

ПД, ДП, ВД, ВП, ХР, РХ - Направление вырезки образцов, применяемое для определения вязкости разрушения и скорости роста усталостной трещины. Первая буква характеризует направление оси образца, вторая — направление плоскости, например: ПВ — ось образца совпадает с шириной полуфабриката, а плоскость трещины параллельна высоте или толщине.

Анализ и получение проб алюминия: Руды. В настоящее время алюминий получают только из одного вида руды — бокситов. В обычно используемых бокситах содержится 50—60% А12О3, <30% Fe2О3, несколько процентов SiО2, ТiО2, иногда несколько процентов СаО и ряд других окислов.

Пробы от бокситов отбирают по общим правилам, обращая особое внимание на возможность поглощения влаги материалом, а также на различное соотношение долей крупных и мелких частиц. Масса пробы зависит от величины опробуемой поставки: от каждых 20 т необходимо отбирать в общую пробу не менее 5 кг.

При отборе проб боксита в конусообразных штабелях от всех крупных кусков массой >2 кг, лежащих в окружности радиусом 1 м, откалывают маленькие кусочки и отбирают в лопату. Недостающий объем заполняют мелкими частицами материала, взятыми с боковой поверхности опробуемого конуса.

Отобранный материал собирают в плотно закрывающиеся сосуды.

Весь материал пробы измельчают в дробилке до частиц размером 20 мм, ссыпают в конус, сокращают и снова дробят до частиц размером <10 мм. Затем материал еще раз перемешивают и отбирают пробы для определения содержания влаги. Оставшийся материал высушивают, снова сокращают и измельчают до частиц размером < 1 мм. Окончательный материал пробы сокращают до 5 кг и дробят без остатка до частиц мельче 0,25 мм.

Дальнейшую подготовку пробы для анализа проводят после высушивания при 105° С. Размер частиц пробы для анализа должен быть менее 0,09 мм, количество материала 50 кг.

Приготовленные пробы боксита очень склонны к расслоению. Если пробы, состоящие из частиц размером <0,25 мм, транспортируют в сосудах, то перед отбором части материала необходимо перемешать весь материал до получения однородного состава. Отбор проб от криолита и фторида алюминия не представляет особых трудностей. Материал, поставляемый в мешках и имеющий однородный состав, опробуют с помощью щупа, причем подпробы отбирают от каждого пятого или десятого мешка. Объединенные подпробы измельчают до тех пор, пока они не будут проходить через сито с размером отверстий 1 мм, и сокращают до массы 1 кг. Этот сокращенный материал пробы измельчают, пока он не будет полностью проходить через сито с размером отверстий 0,25 мм. Затем отбирают пробу для анализа и дробят до получения частиц размером 0,09 мм.

Пробы от жидких расплавов фторидов, применяемых при электролизе расплава алюминия в качестве электролитов, отбирают стальным черпаком из жидкого расплава после удаления твердой настыли с поверхности ванны. Жидкую пробу расплава сливают в изложницу и получают маленький слиточек размерами 150х25х25 мм; затем всю пробу измельчают до размера частиц лабораторной пробы менее 0,09 мм . читать дальше >>>

Плавка алюминия: В зависимости от масштабов производства, характера литья и энергетических возможностей плавку алюминиевых сплавов можно производить в тигельных печах, в электропечах сопротивления и в индукционных электропечах.

Плавка алюминиевых сплавов должна обеспечивать не только высокое качество готового сплава, но и высокую производительность агрегатов и, кроме того, минимальную стоимость литья.

Наиболее прогрессивным методом плавки алюминиевых сплавов является метод индукционного нагрева токами промышленной частоты.

Технология приготовления алюминиевых сплавов слагается из тех же технологических этапов, что и технология приготовления сплавов на основе любых других металлов.

Загрузка шихты при плавке алюминиевых сплавов производится в следующем порядке.

1. При проведении плавки на свежих чушковых металлах и лигатурах в первую очередь загружают (полностью или по частям) алюминий, а затем растворяют лигатуры.

2. При проведении плавки с использованием в шихте предварительного чушкового сплава или чушкового силумина в первую очередь загружают и расплавляют чушковые сплавы, а затем добавляют необходимое количество алюминия и лигатур.

3. В том случае, когда шихта составлена из отходов и чушковых металлов, ее загружают в следующей последовательности: чушковый первичный алюминий, бракованные отливки (слитки), отходы (первого сорта) и рафинированный переплав и лигатуры.

Медь можно вводить в расплав не только в виде лигатуры, но и в виде электролитической меди или отходов (введение путем растворения).

Краткие обозначения:
σв - временное сопротивление разрыву (предел прочности при растяжении), МПа
ε - относительная осадка при появлении первой трещины, %
σ0,05 - предел упругости, МПа
Jк - предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 - предел текучести условный, МПа
σизг - предел прочности при изгибе, МПа
δ5410 - относительное удлинение после разрыва, %
σ-1 - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж - предел текучести при сжатии, МПа
J-1 - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν - относительный сдвиг, %
n - количество циклов нагружения
s в - предел кратковременной прочности, МПа R и ρ - удельное электросопротивление, Ом·м
ψ - относительное сужение, %
E - модуль упругости нормальный, ГПа
KCU и KCV - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T - температура, при которой получены свойства, Град
s T - предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB - твердость по Бринеллю
C - удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)]
HV
- твердость по Виккерсу pn и r - плотность кг/м 3
HRCэ
- твердость по Роквеллу, шкала С
а - коэффициент температурного (линейного) расширения (диапазон 20 o - T ), 1/°С
HRB - твердость по Роквеллу, шкала В
σ t Т - предел длительной прочности, МПа
HSD
- твердость по Шору G - модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1 Область применения

Настоящий стандарт распространяется на алюминий и деформируемые алюминиевые сплавы, предназначенные для изготовления полуфабрикатов (лент в рулонах, листов, кругов-дисков, плит, полос, прутков, профилей, шин, труб, проволоки, поковок и штампованных поковок) методом горячей или холодной деформации, а также слябов и слитков.


2 Нормативные ссылки*

Алюминий АМц

Характеристика и применение алюминия АМц: Коррозионно-стойкие сплавы на основе систем Al—Мn и Аl—Mg. Сплавы типа АМц, АМг2, АМг6 не упрочняются термической обработкой. Они отличаются высокой пластичностью, хорошей свариваемостью и высокой коррозионной стойкостью. Обрабатываемость резанием улучшается с увеличением степени легированности сплавов. Сплавы используются в отожженном, нагартованном и полунагартованном состояниях.

Применяются для изделий, получаемых глубокой вытяжкой, сваркой, от которых требуется высокая коррозионная стойкость (трубопроводы для масла и бензина, радиаторы тракторов и автомобилей, сварные бензобаки), а также для заклепок, корпусов и мачт судов, узлов лифтов и подъемных кранов, рам транспортных средств и др.

Коррозионные свойства сплава АМц: сплав АМц - наиболее распространенный сплав системы А1-Мn - в отожженном состоянии имеет коррозионную стойкость, близкую к коррозионной стойкости чистого алюминия. Введение в сплав марганца благоприятно влияет в связи с тем, что он образует с железом интерметаллические соединения (Мn, Fe)Al, AlFeMnSi и другие с достаточно отрицательным электродным потенциалом и тем самым нейтрализует катодное влияние железа и повышает защитные свойства оксидной пленки на алюминии. Этим можно объяснить, что иногда в атмосферных условиях коррозионная стойкость сплава АМц становится выше коррозионной стойкости алюминия. Положительная роль интерметаллических соединений проявляется также в образовании структурной анизотропии, которая способствует торможению развития коррозии в направлении, перпендикулярном поверхности полуфабриката.

В то же время на сплаве АМц проявляется и отрицательная роль коррозионной анизотропии. Если нагартовка повышает коррозионную стойкость алюминия (повышается сопротивление питтинговой коррозии), то для сплава АМц она может уменьшать ее - появляются предпосылки к расслаивающей коррозии. Эта тенденция увеличивается пропорционально степени нагартовкн и ее связывают с образованием микронадрывов вблизи твердых интерметаллических включений МnА16. Поэтому введение в сплав большого количества других элементов, способствующих образованию интерметаллических соединений, например титана, ухудшает его коррозионную стойкость в нагартованном состоянии. Однако с учетом изложенных выше закономерностей, по-видимому, более существенное влияние на расслаивающую коррозию сплава АМц могут оказывать интерметаллидные соединения марганца с железом в качестве катодов, поскольку концентрация последнего в сплаве достаточно велика (до 0,7 %).

В полунагартованном состоянии, особенно при условии получения листов по схеме НТМО, т.е. частичным отжигом, чувствительность сплава АМц к расслаивающей коррозии мала. По существу коррозия развивается по питтинговому механизму только в местах развития коррозионных очагов наблюдается локальное вспучивание металла, которое отмечается и для многих других сплавов, имеющих структурную анизотропию. Глубина коррозии при этом не больше, а, как правило, даже меньше вследствие положительного эффекта коррозионой анизотропии. По этой причине такое локальное отслаивание не оказывает отрицательного влияния на долговечность конструкций. Оно может только оказывать влияние на декоративный вид анодированных конструкций вследствие локального нарушения анодно-оксидной пленки. Увеличение степени деформации при нагартовке приводит к усилению интенсивности расслаивающей коррозии. Хотя и в этом случае опасность расслаивающей коррозии не достигает таких пределов, как для высоколегированных сплавов, однако в промышленной атмосфере повышенной агрессивности степень РСК достаточно велика.

Увеличение содержания меди до 0,2 % повышает сопротивление расслаивающей коррозии нагартованных полуфабрикатов из сплавов системы Аl-Мn. По-видимому, введение меди в сплав облагораживает потенциал пробоя и вследствие этого уменьшает вероятность зарождения и распространения подповерхностной коррозии вблизи катодных интерметаллическнх фаз.

Особенности прессования алюминиевых сплавов АМц (и подобных): все алюминиевые сплавы, в некоторой степени условно, можно разделить на три группы.

К первой относятся технический алюминий и малолегированные сплавы типа АД31, АМц и др., которые во всем диапазоне температур горячего прессования без смазки допускают (при прочих равных условиях) высокие скорости истечения (до 50—100 м/мин) без образования поверхностных трещин.

Ко второй группе относятся сплавы типа АВ, 01915, АМг2 и др. Эти сплавы допускают средние скорости истечения (5— 20 м/мин).

Третья группа — высоколегированные сплавы и сплавы с повышенным содержанием меди, которые склонны к образованию трещин, и при прессовании их без смазки возможны только низкие скорости истечения (0,5—5 м/мин). Типичные сплавы этой группы — АМг6, Д16, В95 и др.

Наряду с указанными выше факторами при определенных условиях для скорости истечения существуют и другие ограничения.

Так, при прессовании сплавов первой группы ограничения скорости истечения могут быть вызваны техническими возможностями оборудования. Особенно это связано со скоростными характеристиками гидропривода, так как в общем случае развиваемые им скорости движения прессового инструмента и давление (при прочих равных условиях) связаны между собой строгой зависимостью — повышение скорости уменьшает давление, передаваемое на инструмент. При этом давление прессования будет равно развиваемому прессом при определенной скорости движения инструмента и дальнейшее повышение скорости становится невозможным.

Кроме того, ограничения скорости истечения металла могут создавать и другие факторы, как например производительность уборочных устройств, возможности системы регулятора скорости быстро увеличивать ее в начале и уменьшать в конце рабочего хода, особенно при короткой длине заготовок, и т. д.

Повышению скоростей истечения при прессовании алюминиевых сплавов способствует:

1. Снижение температурного интервала нагрева заготовок перед прессованием.

2. Проведение гомогенизации литых заготовок (особенно для сплавов второй и третьей группы).

3. Применение технологических смазок и покрытий инструмента, снижающих контактное трение, что повышает для третьей группы сплавов скорость истечения в 2—3 раза.

4. Применение конструкций матриц (особенно конструкций каналов), которые наиболее полно выравнивают скорости истечения отдельных элементов прoфилей.

5. Применение технологических напусков в виде ребер жесткости при прессовании тонкостенных и широкополочных профилей.

6. Применение местного охлаждения канала матрицы, снижающее температуру выходящего изделия, но не снижающее существенно температуру в пластической зоне.

7. Создание противодавления за счет меньшей конусности канала матрицы или приложения внешней силы, что снижает растягивающие напряжения в поверхностных слоях изделий.

Указанные и другие мероприятия, вытекающие из анализа рассмотренных выше особенностей течения металла при прессовании алюминиевых сплавов и факторов, влияющих на скорость истечения, позволяют в отдельных случаях значительно превысить указанные скорости истечения для каждой группы сплавов.

Конструкции прессового инструмента

Большое, а иногда и решающее влияние на качество поверхности, точность размеров, допустимые скорости истечения прессуемых изделий и другие показатели оказывает конструкция матрицы, в частности форма ее канала, конструкция иглы и пресс-шайбы.

К технологическим элементам конструкции инструмента относятся:

1. Форма и размеры выходного сечения канала матрицы, которые должны учитывать упругие, деформационные и температурные изменения его в процессе прессования, упругую деформационную и термическую усадку прессуемого профиля и внеконтактную

пластическую деформацию металла, связанную с неравномерностью истечения отдельных элементов профиля и наличием радиальной составляющей у скорости течения отдельных частиц металла.

2. Форма и длина калибрующих поясков канала матрицы, позволяющие менять сопротивление истечению отдельных элементов профиля.

3. Радиусы скругления выходных и входных кромок канала матрицы, оптимальная величина которых с точки зрения качества поверхности изделий и скоростей истечения неодинакова для различных групп сплавов.

5. Распорные углы для компенсации усилий, сжимающих канал матриц при прессовании.

6. Углы наклона образующей рабочей поверхности матрицы и переход от поверхности контейнера к поверхности матрицы, играющие большую роль при прессовании со смазкой.

7. Переходные каналы, так называемые «карманы», у матриц при прессовании профилей периодического сечения, их форма, размеры, радиусы скругления.

8. Привязка профиля в плоскости матрицы относительно оси прессования, влияющая на перераспределение объема металла заготовки по участкам, из которых образуются отдельные элементы профиля, а следовательно, и на характер течения металла.

9. Расстояние между каналами многоканальных матриц и их расположение относительно оси прессования, оказывающие влияние на стабильность геометрических размеров и степень неравномерности скорости истечения.

10. Толщина матрицы, оказывающая большое влияние на деформацию изгиба ее отдельных элементов, что существенно изменяет размеры прессуемых изделий и снижает стойкость при производстве профилей с полузамкнутыми полостями (особенно у матриц консольного типа).

11. Конструкция гребня, форма, размеры и расположение каналов для пропуска металла и объем «камеры» сварки у матриц с вмонтированной иглой для получения полых профилей. Эти элементы влияют на стойкость матриц, потребное давление прессования, качество сварного шва, геометрические размеры и поверхность изделий.

12. Конусность игл, глубина ступеней конуса и радиусы переходов у ступенчатых игл, применяемых для производства труб постоянного и переменного сечения, определяющие перепад размеров трубы по длине, протяженность перехода размеров у труб переменного сечения и форму этого перехода.

13. Размеры и форма прессшайб, которые определяют толщину «рубашки» при прессовании без смазки, величину затечки, форму прессостатка, характер распрессовки при прессовании со смазкой.

Краткие обозначения:
σв - временное сопротивление разрыву (предел прочности при растяжении), МПа
ε - относительная осадка при появлении первой трещины, %
σ0,05 - предел упругости, МПа
Jк - предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 - предел текучести условный, МПа
σизг - предел прочности при изгибе, МПа
δ5410 - относительное удлинение после разрыва, %
σ-1 - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж - предел текучести при сжатии, МПа
J-1 - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν - относительный сдвиг, %
n - количество циклов нагружения
s в - предел кратковременной прочности, МПа R и ρ - удельное электросопротивление, Ом·м
ψ - относительное сужение, %
E - модуль упругости нормальный, ГПа
KCU и KCV - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см 2 T - температура, при которой получены свойства, Град
s T - предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB - твердость по Бринеллю
C - удельная теплоемкость материала (диапазон 20 o - T ), [Дж/(кг·град)]
HV
- твердость по Виккерсу pn и r - плотность кг/м 3
HRCэ
- твердость по Роквеллу, шкала С
а - коэффициент температурного (линейного) расширения (диапазон 20 o - T ), 1/°С
HRB - твердость по Роквеллу, шкала В
σ t Т - предел длительной прочности, МПа
HSD
- твердость по Шору G - модуль упругости при сдвиге кручением, ГПа

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Расшифровка марок алюминиевых сплавов

Алюминий особой чистоты применяется в производстве полупроводниковых приборов и для исследовательской работы. Алюминий высокой чистоты применяется для плакирования деталей электро- и радиооборудования. Алюминий технической чистоты используется для приготовления алюминиевых сплавов, изготовления проводов, прокладок.

Купить алюминий в Тольятти

После деформации полуфабрикатов (получения листов, плит, лент, полос, профилей, панелей, прутков, труб, проволоки, штамповок и поковок) технический алюминий получает обозначение АД (алюминий деформированный). Цифры после маркировки АД также обозначают процентную чистоту сплава в процентах.

Удобнее применять цифровую маркировку. Принцип изложен ниже, для сплавов.

Если в алюминии, предназначенном для производства деформируемых Al-Mg сплавов, содержание Na < 0.0015 %, то к маркировке добавляется буква Р (рафинированный). Буква «Ш» указывает на алюминиевые сплавы для пищевой промышленности.

Маркировка технического алюминия для изготовления полуфабрикатов методом горячей или холодной деформации

Буквенно-цифровая маркировка Цифровая маркировка
АД 1015
АД0 1011
АД00 1010
АД00Е 1010Е
АД0Е 1011Е
АД1 1013

"Е" - в марках с гарантированными электрическими характеристиками.

Алюминиевого сплава марки аве

АЛЮМИНИЙ И СПЛАВЫ АЛЮМИНИЕВЫЕ ДЕФОРМИРУЕМЫЕ

Aluminium and wrought aluminium alloys. Grades

МКС 77.120.10
ОКП 17 340

Дата введения 2000-07-01

1 РАЗРАБОТАН ОАО "Всероссийский институт легких сплавов" (ВИЛС), Межгосударственным техническим комитетом МТК 297 "Материалы и полуфабрикаты из легких и специальных сплавов"

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол N 12 от 21 ноября 1997 г.)

За принятие проголосовали:

Наименование национального органа по стандартизации

Госстандарт Республики Казахстан

Главная государственная инспекция Туркменистана

Изменение N 1 принято Межгосударственным советом по стандартизации, метрологии и сертификации (протокол N 23 от 22 мая 2003 г.)

За принятие изменения проголосовали национальные органы по стандартизации следующих государств: AZ, AM, BY, GE, KZ, KG, MD, RU, TJ, TM, UZ, UA [коды альфа-2 по МК (ИСО 3166) 004]

3 В таблицах 1-6 приводятся марки и химический состав алюминия и алюминиевых сплавов с учетом требований международного стандарта ИСО 209:2007* "Алюминий и алюминиевые сплавы. Химический состав".

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - Примечание изготовителя базы данных.

4 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 8 декабря 1998 г. N 433 межгосударственный стандарт ГОСТ 4784-97 введен в действие в качестве государственного стандарта Российской Федерации с 1 июля 2000 г.

6 ИЗДАНИЕ (август 2009 г.) с Изменением N 1, утвержденным в ноябре 2003 г. (ИУС 2-2004), Поправками (ИУС 11-2000, 5-2004, 4-2005)

ВНЕСЕНЫ: Изменение N 2, утвержденное и введенное в действие Приказом Росстандарта от 22.11.2013 N 2030-ст c 01.09.2014; Изменение N 3, утвержденное и введенное в действие Приказом Росстандарта от 03.08.2015 N 1061-ст c 01.02.2016

Изменения N 2, 3 внесены изготовителем базы данных по тексту ИУС N 7, 2015 год, ИУС N 11, 2015 год

ВНЕСЕНА поправка, опубликованная в ИУС N 5, 2004 год, поправка, опубликованная в ИУС N 4, 2005 год, поправка, опубликованная в ИУС N 2, 2016 год

Поправки внесены изготовителем базы данных

Сплавы

Для отечественных алюминиевых сплавов используются буквенно-цифровая и цифровая системы обозначений. В буквенно-цифровой маркировке (хотя этим сплавам позднее была присвоена цифровая маркировка, но она не "прижилась") не заложено какой-либо системы. Буквы могут символизировать алюминий и основной легирующий компонент - АМц (Al-Mn), АМг1 (Al-Mg), назначение сплава (АК6, АК4-1 -алюминий ковочный), название сплава (АВ -авиаль, Д16 -дуралюмин), могут быть связаны с названием института, разработавшего сплав (ВАД1, ВАД23 - ВИАМ - Всероссийский институт авиационных материалов, алюминиевый деформируемый) и т.д. Цифры после букв химический состав не отражают.

В конце шестидесятых годов была введена четырехзначная цифровая маркировка. Первая цифра обозначает основу алюминиевого сплава. Алюминий и сплавы на его основе маркируют цифрой "1". Вторая цифра обозначает основной легирующий компонент или основные легирующие компоненты. Второй цифрой "0" обозначаются различные марки алюминия, спеченные алюминиевые сплавы (САС), различные сорта пеноалюминия. Цифрой "1" обозначают сплавы на основе системы Al-Сu-Мg; цифрой "2" -сплавы на основе системы Al-Сu; цифрой "3" -сплавы на основе системы Al-Mg-Si; цифрой "4" -сплавы на основе системы Аl-Li, а также сплавы, легированные малорастворимыми компонентами, например, переходными металлами (марганец, хром, цирконий); сплавы, замаркированные цифрой "5", базируются на системе Al-Mg и называются магналиями; сплавы на основе систем Аl-Zn-Мg или Аl-Zn-Мg-Сu обозначаются цифрой "9". Цифры 6, 7 и 8 –резервные.

В Российской Федерации ГОСТ 4784 «Алюминий и сплавы алюминиевые деформируемые. Марки.» дает маркировку сплавов тремя способами: как в буквенно-цифровом виде, так и только в цифровом виде, а также и с учетом требований международного стандарта (международная маркировка) ИСО 209-1 (ISO 209-1 Wrought aluminium and aluminium alloys -Chemical composition and forms of products -Part 1: Chemical composition). При этом цифровая маркировка по ГОСТ не совпадает с международной маркировкой алюминиевых сплавов.

Цифровая маркировка деформируемых алюминиевых сплавов

Марка Группа сплавов, основная система легирования
1000-1018 Технический алюминий
1019, 1029 и т. д. Порошковые сплавы
1020-1025 Пеноалюминий
1100-1190 Al-Cu-Mg, Al-Cu-Mg-Fe-Ni
1200-1290 Al-Cu-Mn, Al-Cu-Li-Mn-Cd
1300-1390 Al-Mg-Si, Al-Mg-Si-Cu
1319, 1329 и т. д. Al-Si, порошковые сплавы САС
1400-1419 Al-Mn, Al-Be-Mg
1420-1490 Al-Li
1500-1590 Al-Mg
1900-1990 Al-Zn-Mg, Al-Zn-Mg-Cu

Последние две цифры в цифровом обозначении алюминиевого сплава - это его порядковый номер. Последняя цифра несет дополнительную информацию: сплавы, оканчивающиеся на нечетную цифру - деформируемые, на четную – литейные, 7 – проволочный сплав, 9 – металлокерамический сплав. Если сплав опытный и не используется в серийном производстве, то перед маркой ставят цифру "0" (01570, 01970) и маркировка становится пятизначной.

Для указания состояния деформированных полуфабрикатов, изготавливаемых из алюминиевых сплавов, используется буквенно-цифровая система обозначений после марки сплава. Без обозначения -значит без термической обработки.

П - полуфабрикат (сплавы для холодной штамповки из проволоки);

М - мягкий отожженный;

Н - нагартованный;

Н3 - нагартованный на три четверти;

Н2 - нагартованный на одну вторую;

Н1 - нагартованный на одну четверть;

Т - закаленный и естественно состаренный;

Т1 - закаленный и искусственно состаренный на максимальную прочность;

Т2, Т3 - режимы искусственного старения, обеспечивающие перестаривание материала (режимы смягчающего искусственного старения);

Т5 - закалка полуфабрикатов с температуры окончания горячей обработки давлением и последующее искусственное старение на максимальную прочность;

T7 - закалка, усиленная правка растяжением (1,5-3 %) и искусственное старение на максимальную прочность;

А – нормальная плакировка;

Б - листы без плакировки или с технологической плакировкой;

У- утолщенная плакировка (8% на сторону);

В - повышенное качествовыкатки закаленных и состаренных листов;

О - повышенное качество выкатки отожженных листов;

ГК - горячекатаные листы, плиты;

ТПП - закаленные и состаренные профили повышенной прочности (для Д16).

В конце марки могут стоять буквы, характеризующиеособенности данного сплава:

Литейные сплавы

Литейные сплавы на основе алюминия в общем случае маркируют двумя буквами. Вторая буква указывает элемент, на базе которого получен сплав. Например, «АК» –система алюминий –кремний, «АМ» –алюминий –медь, «АМг» –алюминий –магний, «АМц» –алюминий –марганец и т.д. Затем идет число, указывающее содержание элемента. Если сплав легированный, указывают буквенные обозначения элементов и их содержание:

Например, АК12М2 –сплав системы алюминий–кремний, с содержанием кремния 12 % (в среднем) и меди 2 %. АМг4К –система алюминий–магний с содержанием 4 % магния и 1 % кремния.

Если литейный алюминиевый сплав термически упрочняется, в конце марки ставят обозначение термической обработки (ГОСТ 1583-93):

Т1 – искусственное старение без предварительной закалки;

Т5 – закалка и кратковременное неполное искусственное старение;

Т6 – закалка и полное искусственное старение;

Т7 – закалка и стабилизирующий отпуск;

Т8 – закалка и отпуск.

Маркировка по принципу АЛ+цифры, обозначающие условный номер марки, например АЛ9, устарела, хотя еще часто встречается в технической документации.

Читайте также: